An improvement to the SIFT descriptor for image representation and matching
نویسندگان
چکیده
0167-8655/$ see front matter 2013 Elsevier B.V. A http://dx.doi.org/10.1016/j.patrec.2013.03.021 ⇑ Corresponding author. Tel./fax: +86 29 82667836 E-mail addresses: [email protected], liugz@xjtu Constructing proper descriptors for interest points in images is a critical aspect for local features related tasks in computer vision and pattern recognition. Although the SIFT descriptor has been proven to perform better than the other existing local descriptors, it does not gain sufficient distinctiveness and robustness in image match especially in the case of affine and mirror transformations, in which many mismatches could occur. This paper presents an improvement to the SIFT descriptor for image matching and retrieval. The framework of the proposed descriptor consists of the following steps: normalizing elliptical neighboring region, transforming to affine scale-space, improving the SIFT descriptor with polar histogram orientation bin, as well as integrating the mirror reflection invariant. A comparative evaluation of different descriptors is carried out showing that the present approach provides better results than the existing methods. 2013 Elsevier B.V. All rights reserved.
منابع مشابه
New Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملPerformance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملMBR-SIFT: A mirror reflected invariant feature descriptor using a binary representation for image matching
The traditional scale invariant feature transform (SIFT) method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT) methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these ...
متن کاملDPML-Risk: An Efficient Algorithm for Image Registration
Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...
متن کاملP-SURF: A Robust Local Image Descriptor
SIFT-like representations are considered as being most resistant to common deformations, although their computational burden is heavy for low-computation applications such as mobile image retrieval. H. Bay et. al. proposed an efficient implementation of SIFT called SURF. Although this descriptor has been able to represent the nature of some underlying image patterns, it is not enough to represe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition Letters
دوره 34 شماره
صفحات -
تاریخ انتشار 2013